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A b s t r a c t  

No explicit solutions of the Skyrme field equation have been found since its formulation, more 
than 35 years ago. Here we reduce this equation to a two-dimensional model, for which we obtain 
a whole class of solutions. Therefore, we change the three-dimensional SU(2)-valued field to a 
two-dimensional Aff(R)-valued field, where Aff(~) is the only two-dimensional, connected, non- 
commutative Lie group. We will give examples for this reduced field equation. 
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I .  I n t r o d u c t i o n  

The Skyrme model is a non-linear field theory of low energy hadron physics, which 

identifies baryons as topological solitons of a field theory for pions. It was introduced by 

the British physicist T.H.R. Skyrme (1922-87) in early 1960s and found its revival in its 

context to Quantum Chromodynamics (QCD). 

Using Goldstone boson fields (zr °, rc 1 , zr 2) : M 4 --~ R on space-time M 4 we may write 

a Skyrme field 

U: M 4 ~ SU(2) as U ----- exp(iC), 
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where 

C:---- ( Jr° s r l + i r 2 " ~  = ( ~ 0  7 t + )  (1) 
7~ 1 _ irr2 _zro J _zro 

with zr ± := sr J + rr 2 : M 4 --> C. To ensure finite energy, the Goldstone boson fields rr a (x) 

(a = 0, 1,2) are required to tend to zero and thus U(x) --)- 1 for r(x) ~ oo, where 
r = (x 2 + y2 + z2)-J/2 denotes the spatial radius o f x  ~ M 4 (cf. [1]). 

The Lagrangian density of the Skyrme model is given by (note that we use Einstein 
summation convention) 

F_ 2 1 
£ _ J'Tr(LtzL u) + L~I[L t', L~]), 16 3-~g  2 Tr( [Lu '  

where L u := L(eu) are the components of  the Maurer-Cartan form L = U -1 dU (# = 

0, 1,2, 3), {eu} local coordinates on M 4 and indices are raised using the Minkowski metric 
(+,  , , - )  of the space-t ime M 4. The constants are the pion decay constant Fr  and a 

unit-free parameter g introduced by Skyrme to stabilize the solitons [2,3]. The values for 
Fr  and g can be found in [3]. Without loss of generality, we will fix F~ - g = 1. This leads 
to the Skyrme field equation [2] 

0 =  0 u (Ltt + ¼[Lv, [L ~, Lrt]])  = -8  (L + ¼[L(ev), [L(eV), L ] ] )  (2) 

with co-derivative ¢Sogk := ( -  1 )k ,  d* ogk for k-forms ~ok, where • denotes the Hodge star op- 
erator on M 4. 

In this paper we will reduce the field equation to a two-dimensional model, i.e., we are 
looking at maps 

U: M ~ Aff(lt~), 

which satisfy the Skyrme field equation (2), where M is an arbitrary connected, n-dimen- 
sional, pseudo-Riemannian manifold and Aff(I/~) is a two-dimensional Lie group. The goal 
is to find examples for these maps U. 

To accomplish this, we will introduce the Lie group Af f (~ )  and its basic properties 
in Section 2. In Section 3 we will obtain two conditions for functions on M, which are 

equivalent to solving the field equation (2). Finally, in Section 4 we will give a class of 
examples. 

2.  T h e  L i e  g r o u p  A f t  (~) 

The Lie group Af f (~ )  can be defined as 

Af f (~ )  = { (  0 ~ ) : a ,  b c ~ , a > O } ,  

and its Lie algebra has the form 
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{ ( 0  Y ) : x , y ~ , }  =LinR(r , , r2)  aff(~) = 0 

with a basis 

00) ' (o0 ;) 
The commutator relation of the Lie algebra aff(l~) is given by [rl, r2] = r2. Thus it is 

obvious that this Lie group is the only two-dimensional, non-commutative one. It is also a 
non-compact Lie group, which allows no Ad-invariant scalar product like the Killing form. 

From the physicist's point of view, this model corresponds to neglecting the rr-- (resp., 
Jr +-) excitations. In fact, we may write C in (1) as 

C = 2 7 r ° r l + Z r + ? 2 + r r - f - 3 : = 2 7 r ° ( ~  _ O ) + z r + ( ~  1 0 ) + r r - ( 0 1  00). 

Then we obtain the relation [fq, f-2] = r2. Thus the Lie algebra generated by f-j and r2 is 
isomorphic to aff(R) - the case we describe here. 

Since Aff(•) looks topologically like R + x ~, the kth homotopy group rrk (Aft(R)) is 
trivial for any k. Therefore, we have no chance to find a topological invariant for the field 
U: M ~ Aff(~), i.e., this two-dimensional model has no topological quantum number like 
the classical SU(2)-Skyrme model, where this topological quantum number is interpreted as 
the number of baryons described by a given field U. Nevertheless, recall that these Skyrme 
fields have non-trivial winding numbers only if all boson fields are excited, and so the 
baryon number for the fields we are dealing with would be zero anyhow. 

With regard to the Skyrme field equation (2), we are interested in the Maurer-Cartan 
form of Aft(R). So with 

A = ( 0  bl ) E Are(R), 

A _ l = ( 1 / a  - b / a )  
0 1 ' 

we obtain the Maurer-Cartan form 

L := A-l  dA = ( (1/o)da 

d A =  ( d a  ~b )  
0 

1 ( l /a )  d b =  _1 da • rl + - db- •2 E aft(R). 
0 a a 

These are the basic facts we have to know for the following calculations. 

(3) 

3. Solutions of the field equation 

In this section, we will transform the field equation into two conditions for functions on 
the manifold M. 

Let us write the map U: M ~ Aft(R) in the general form 

U(x) = (ef~ x) g(x) (4) 
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with functions f ,  g on the manifold M, such that f ( x ) ,  g(x) ~ 0 for r(x) --+ oo. Thus, 
we obtain from (3) for the Maurer-Cartan form 

L : d f - r l  + e - f d g . r 2 .  

Use of this information for the field equation (2) results in: 

0 = 8 ( L  +¼[L(ev) ,[L(eV) ,L]])  

( d f  • rj + e - f d g  • r2 8 

+ ] (d f (ev) . d f (eV)e- f dg - d f (ev) . dg(eV)e- f d f )  . r2). 

In order to avoid local coordinates {ev} we may use the Laplace operator A = 8 d + d8 

and the scalar product ( , ) of  differential forms, where { dh, dk) = dh(ev) • dk(e ~) for 
functions h and k on M. Thus the field equation is equivalent to the following two conditions 

on f and g: 
(i) A f = 0  and 

(ii) 6 ( e - f  d g +  l{df ,  d f ) e - f  d g - l ( d f ,  d g ) e - f  d f ) : O .  

Using now the relation 6h dk = - (  dh, dk) + hAk, we may rewrite condition (ii) as 

( (d f ,  d g ) ~ l + ~ (  f ,  d f ) (  d g ) +  + 

_ l  4 (dg ,  d ( d f ,  d f ) ) -  ¼ ( A f ) ( d f ,  d g ) +  l ( d f ,  d ( d f ,  d g ) ) = 0 ,  

and with condition (i), zaf = 0, it reduces to 

O :  

+ l ( d f ,  d ( d f ,  dg)). (5) 

Note that for a compact Riemannian manifold M, every harmonic function is constant, 

and with our boundary condition f ~ 0 for r -+ ~ we obtain from A f  = 0 that f = 0. 
This, in turn, results in Ag = 0 and thus we only get the trivial solution in this case. 

So, we are looking for solutions on non-compact Riemannian manifolds and manifolds 
with a metric of index different from zero. 

4. Examples for Skyrme fields 

Example 1. Let us first look at the trivial case for f ,  namely d f  - O. As was said before, 
if f is constant, then our boundary condition on f requires f -- O. In this case, condition 
(ii) is equivalent to Ag = O. So every 

.), 
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with harmonic g and g --+ 0 for r -+  c~ solves the field equation. Of course, solutions 

of Ag = 0 are well-known, let us just  mention some of them. We use spherical coordi- 

nates (r, 0, 49) on R 3 and p = (x 2 + y2)-1/2.  As static solutions we obtain 

+l Clm 
g(r, O, 49) = Z ~ pml (cosO) sin(m49 + 49m) with Ctm, 49m E R, (6) 

/=0 m=-l 

where Pt m denote the associated Legendre polynomials  in cos 0 defined by 

_ _  d l+m 
P/m(cos0) --  (--1)m (1 cos20) m/2 [(COS2 0 - 1)11. 

211! d(cos O) l+m 

Recall that for m = 0 the first Legendre polynomials  are 

P0(cos0)  = I, PI(COS0) = cos0 ,  P2(cos0)  = 1 (3cos20  - 1), 

and we thus have the following linear independent solutions: 

r~ k2 3z2 - r2 
go = k0 , gl = kl , g2 = 2r 5 withki E R. 

In two dimensions, i.e., independent of  time t and space z, the solution is 

Am 
g(P' 49) = Y ~  pm sin(m49 + 49m) with Am, 49m ~ ~.  (7) 

m : l  

Note that all these solutions have a singularity at r = 0, resp., p = 0. In fact, we will not 

find a non-trivial smooth solution without any singularity, because in that case, this 'would 

also be a harmonic function on the one-point compactification of the space manifold, and 

hence would be constant, i.e., zero. 

As non-static solutions on Minkowski space we find 

g(t, p, 49, z) = G(t + z) . g(P, 49) 

with g(p,  49) from (7) and any G c C ~ ( R ) ,  or more generally, with Gm E C ~ ( ~ ) ,  

OQ 

g(t,  p, 49, z) = Z Gm(t 4- z) --Am sin(m49 + 49m)- 
m=l pm 

These solutions describe wave functions in the +z-direct ion,  e.g., in order to ensure that 

for every time t, our boundary conditions are satisfied, G and the Gm may be taken to 

be gaussian. Generalizations to wave functions in any direction are immediate, e.g., any 

superposition of plane waves 

g(t,  r) = f Ak sin(kr - IkJt - 49k) dk3 

k 

is harmonic. Nevertheless, note that plane waves do not obey our boundary condition. 
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Example  2. We define 

w : :  (e  - f d g  + ¼(df ,  d f ) e  - f d g - / ( d f ,  dg)e - f d f ) ,  

i.e., condition (ii) is given by 8w = 0. Hence 

(d f ,  w) = e - f  (d f ,  dg). 

Now suppose we have 0 < (d f ,  d f ) ,  which, e.g., is always the case on a Riemannian 

manifold. Then (1 + ¼( d f ,  d f ) ) - I  > 0 and, together with the definition of w, this yields 

d g = e  f .  o g + l ( d f ,  w) d f  (8) 

l + l I d f ,  d f )  

If the fight-hand side was an exact 1-form, or at least closed (and M simply connected), 
then this would be an equivalent condition to the second. Unfortunately, this is not the case 

in general, but leads to a condition similar to (5). Nevertheless there is a simple example, 
where exactness can be checked immediately: Let w = c • d f  for any constant c ~ ~. 
Then (8) yields dg = c - e f d f ,  i.e., g = c • e f + c, with constant ~ ~ ~. Our boundary 

conditions require ~ = - c .  Thus a second example for a class of  fields which solve the field 
equation (2) is 

U ( x ) =  ( e o  c ' ( e f - l ) ) i  

for any harmonic function f on M and constant c E ~. Examples for f can easily b e found 
analogously to Example 1. 

Example  3. Finally let us discuss the case, where d f  :fi 0, but ( d f ,  d f )  = 0 in a pseudo- 
Riemannian manifold, e.g., the Minkowski space. An obvious solution of(5)  is ( d f ,  dg) = 
0 and Ag = 0. Note that if g is such a solution, then also g • e f is a solution of (5). More 

generally, if g is harmonic and obeys { d f ,  dg) = 0, then the same holds for 

g '  := g .  E l ( f )  + F o ( f )  with F0, El E C ~ ( ~ ) ,  

e.g., if dg = h d f  with any smooth m a p h ,  then / d f ,  dg) -- h .  ( d f ,  d f )  = 0 a n d  
Ag = -- ( dh, d f )  = 0, because 0 = d2g : dh A d f ,  i.e., dh and d f  are co-linear. Note 
that this also yields that h is harmonic. Examples for this situation are numerous, let us only 
state in ~ x ~: 

f ( t , z )  = F ( t ± z ) ,  g ( t , z )  = G ( t 4 - z )  withF,  G E C a ( R ) .  
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